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Travelling reaction-diffusion waves are considered in a finite medium. The model consid- 
ered is a simplified model of the Belousov-Zhabotinskii reaction, described mathematically by 
the two-variable Oregonator. A one-dimensional problem consisting of three regions is consid- 
ered. Regions I (x ~< 0) and III (x/> 1) act as reservoirs with fixed concentrations of the reactant 
X (the autocatalyst, hypobromous acid (HBrO2)), where the concentration of X in regions I 
and III may be different. Region II represents a catalyst-loaded membrane, within which spe- 
cies X can diffuse while species Z (the oxidized form of the metal-ion catalyst (Ce(IV))) is fixed 
spatially. The large time behaviour of the system is considered and both stable steady states 
and periodic spatio-temporal structures are seen. 

1. I n t r o d u c t i o n  

In this paper  the reduced two-variable Oregonator  model  for the Belousov-  
Zhabotinskii  (BZ) reaction [1,2] is considered. This model  was used previously to.  
discuss the initiation and propagat ion of  reaction-diffusion waves travelling along 
membrane  interfaces in the Belousov-Zhabotinskii  reaction by Leach et al. [3]. 
The work  described in detail in [3] was mot ivated by the recent experimental  
observations reported by Showalter and his co-workers, see, for example, Winston 
et al. [4]. Here the metal-ion catalyst (Ce(IV)) in the BZ reaction is immobilized in 
gel form within a Naf ion  membrane ,  inhibiting the passage of  the ionic species, and 
the whole is the bathed in a solution of  the other  reactants. Thus the react ion can 
take place only along the interface between the membrane  and the surrounding 
solution. 

The present paper is a prel iminary numerical  investigation of  a new experimen- 
tal configuration. The reaction system under  investigation here consists of  three 
regions. Regions I and region III are essentially inert and act only as reservoirs with 
fixed concentrat ions of  the reactant  X (the autocatalyst ,  hypobromous  acid 
(HBrO2)), where the concentrat ions of  X in regions I and III m a y  be different. The 
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reaction is confined to region II which represents a catalyst-loaded membrane, 
within which species X can diffuse while species Z (the oxidized form of the metal- 
ion catalyst is fixed spatially in the form of a gel. It is assumed that the reservoir 
regions I and III are sufficiently large and well-stirred so that the very small loss of 
Z across the reservoir-membrane interfaces into these regions does not alter the 
concentration of X there. A one-dimensional model is considered, with the 
concentrations u(x, t) and v(x, t) of autocatalyst X and the oxidized form of the 
metal-ion catalyst Z, respectively, being the dependent variables and where the co- 
ordinate x is normal to the interfaces. Region II is scaled so that it is a finite region 
of unit length extending over the range 0 ~< x ~< 1. Under such scalings the equations 
for the reduced Oregonator become, from [3], 

Ou DO2U (q-u) 
E--~= Ox2+U(1-u)+f (q+u)V, (la) 

Ov 
Ot = u - v (lb) 

in 0 ~< x ~< 1, t >i O, with boundary conditions 

U = U  0 o n  x=O} ( ) 
t~>O 2a 

U = U 1 o n  x----1 

and initial condition 

u = v = 0  in 0~<x~<l at t = 0 .  (2b) 

Equations (1) have been made dimensionless in essentially the same way as 
described in [3] except that here we use l, the width of the membrane, as the scale for 
the space co-ordinate x. This leads to the extra non-dimensional parameter D (the 
diffusion parameter), which is given by 

Dx 
D = ksAl~, (3) 

where Dx is the diffusion coefficient of autocatalyst X and where k5 is the rate con- 
stant which determines the rate of production of Z in the Oregonator model. This 
diffusion parameter is considered small. 

Equations (1) contain three other non-dimensional parameters, namely q, e and 
f (as defined in [3]). The parameter q is thought to be small (we take q = 0.0008 
throughout). The parameter e is generally taken to be small and certainly within the 
range 0 < e ~< 1, while the parameter f  can take all (positive) values. The remaining 
two parameters u0 and ul are non-dimensional (constant) concentrations of the 
autocatalyst on the boundaries x = 0 and x = 1, respectively. 

The two-variable Oregonator model in a well-stirred system is given by eqs. (1) 
with the diffusion term put to zero. This system has two, physically acceptable, (i.e. 
non-negative) stationary states (Us, vs) given by 



J. A. Leach et aL / Waves in a finite medium 117 

us = vs = 0, (4a) 

U s = V s = ½ { 1 - ( f  +q) + ~/( f  + q -  l)2 + 4 q ( f  + l ) }  (4b) 

Stationary state (4a) corresponds to the initial conditions for the unreacted state 
and is a saddle point  (and thus unstable) for all parameter values. Stationary state 
(4b) can be both stable and unstable with Hopf  bifurcations occuring at the change 
of  stability. The conditions for which are given parametrically by 

e = l - 2 u s  l + _ q + u s _  

2. N ume r i c a l  results 

The initial-boundary value problem given by eqs. (1) and conditions ~2) was 
solved numerically using essentially the same method as used to solve the initial- 
value problem described by Leach et al. [3], this method being based on the scheme 
used by Merkin and Needham [5]. 

The numerical scheme is a modified Crank-Nicolson method,  in which the deri- 
vatives in the t-direction are replaced by forward differences and all the other 
terms averaged over the time-step form t to t + At. This results in two coupled 
ordinary differential equations in x which are then differenced using central differ- 
ences. The resulting sets of  nonlinear algebraic equations are solved by Newton-  
Raphson  iteration, a process which was found to converge very quickly for the 
present problem. 

In the numerical results presented below, the parameter  q was fixed at 
q = 0.0008, which is sufficiently small to allow both single travelling waves and 
wave trains to be observed. The parameters u0 and ul (the dimensionless concentra- 
tions of  the autocatalyst on the reservoir membrane boundaries at x-- -0  and 
x = 1, respectively) were fixed at the same values, u0 = ul = 1.0 for most  of  the cal- 
culations. This value can be chosen arbitrarily, since there is no min imum value of  
the autocatalyst on the boundary below which travelling waves are not  initiated, 
as was shown in Leach et al. [3]. However the magnitude of  the non-dimensional 
concentrat ion of  the autocatalyst on a boundary does have a weak effect on the 
time scale over which travelling waves are first seen. When u0 = ul, the solution in 
the finite region 0 ~< 1 ~< 1 is symmetric about x = ½. However, for u0 ~- Ul a wave 
will be initiated from the boundary with the larger concentration of the autocata- 
lyst before a wave is initiated from the other boundary. Consequently the point  of  
collision of  the two waves will no longer be at x = ½, but will be shifted slightly 
towards the boundary with the lower autocatalyst concentration. 

The parameter  D is considered small (D << 1), ensuring that there are bound- 
ary-layer regions in the membrane (region II) at the interfaces with the reservoirs of  
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thickness of O(D1/2) .  I n  the results presented below two values of D are consid- 
ered, namely D = 0.001 and D = 0.00001. Decreasing the value of D, allows a lar- 
ger number of waves in the wave train to be observed clearly. The values of the 
parameters e and f are chosen so as to illustrate the distinct types of behaviour 
encountered. 

Firstly, consider values of the parameters f  = 0.4, e = 0.3 and D = 0.001. These 
values exemplify the situation where stationary state (4b) is stable, (us = Vs 
= 0.60106). Figure 1 shows the situation after sufficient time has elapsed for the 
solution to have settled down to a steady state. The initial development in this case 
shows two travelling waves, one emerging from each boundary-layer region close 
to the membrane-reservoir interfaces and converting the initially unreacted state 
to the stable fully reacted stationary state (4b) as they travel towards the centre. 
These waves then collide at the centre and leave behind the steady state shown in 
fig. 1, with the concentrations of both X and Z being equal. No further time-depen- 
dent behaviour is generated. 

Next, consider values of the parameters f  = 1.0, e = 0.3. In this case stationary 
state (4b) is unstable and only wave trains are observed in the reaction-diffusion 
system. Although, this value of E is somewhat larger than is generally regarded as 
being physically realistic for the BZ reaction, this choice of e exemplifies the fea- 
tures of the wave profiles. It allows a large number of waves to be depicted clearly in 
the wave trains for the expenditure of a reasonable amount of computational 
effort. A more physically realistic value for e (say e = 0.05) requires much larger 
amounts of computational effort to generate the wave profiles due to the much 
increased wave speed. 

Figure 2 illustrates a sequence of profiles of the autocatalyst concentration u 
plotted against x. The data was sampled after a substantial time had elapsed, allow- 
ing the transitory behaviour to die out and ensuring that any non-steady behaviour 
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Fig .  1. C o n c e n t r a t i o n  p ro f i l e  o f  u a n d  v p l o t t e d  a g a i n s t  x,  for  e = 0 . 3 , f  = 0.4, D = 0.001,  q = 0 .0008  

a n d  u0 = ul = 1.0. 



J.A. Leach et al. / Waves in a finite medium 119 

1,0 1.0 

0.0 0,2 0.4 0,6 0.8 1,0 0.0 0,2 04  0,6 0.8 1.0 
X 

1,0 

0.8 

06 

0.4 

0~2 

0.0 
0,0 

1.0 

0,8 

(b) O,6 (e) 

0,4 ~ 
0.2 

0.2 0.4 0.6 0~8 1.0 O0 02 0,4 0,6 0.8 1,0 

1.0 

0,8 

0.6 

0,4 

02 

0.0 
0.0 

(c) 

0.2 0.4 06 0.8 1.0 

08 
0.6 
0.4 
0.2 
0.0 

O0 0.2 0.4 0.6 0.8 1.0 

Fig.  2. Concentrat ion  profdes  o f  u plotted against  x,  for e = 0 . 3 , f  = 1.0, D = 0.001, q = 0.0008 and 
uo --- u l  = 1 . 0 .  

was truly repetitive. Figure 3 illustrates the corresponding sequence for concentra- 
tion v (sampled at the same times as the sequence in fig. 2). Fig. 2(a) shows the 
waves just being born from the boundary-layer regions, with fig. 2(b) showing the 
waves starting to become detached from the boundary-layer regions. Ahead of  
these waves the medium is excitable allowing both waves to travel towards the cen- 
tre of the region. Figures 2(c)-(f) then show in sequence the collision at the centre 
and the final collapse of the waves, leaving the region at first refractory to further 
excitation at the rest state u -- q. The finite region then gradually recovers excitabil- 
ity ready for the whole process to be repeated. Note that behind the waves the con- 
centration of u sharply decreases to a value close to q, while the structure of v 
(fig. 3) is much more ramp-like. This whole process is repeated on a (non- 
dimensional) time period of  t = 5.39, being made up of times t = 3.80 in the active 
state and t = 1.59 in the rest state. 

On decreasing the parameter D the structure of the travelling waves can be seen 
more clearly. Figure 4 illustrates this by displaying a sequence of  concentration 
profiles of  u plotted against x, again after the transients had died out, for e = 0.3 
a n d f  = 1.0 but now with D = 0.00001. Figure 4(a) shows a pair of  wavetrains of  
increasing amplitude generated from the boundary-layer regions (which are now 
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Fig .  3. C o n c e n t r a t i o n  profi les  o f  v p lot ted  against  x ,  for e = 0 . 3 , f  = 1.0, D = 0.001,  q = 0 .0008  a n d  
u0 = ul = 1.0. 

very thin), travelling towards the centre. The picture is much clearer in this case. 
The leading waves in each of  the wave trains collide at the centre initially increasing 
the concentration u of autocatalyst X there before annihilating each other. At the 
same time further wavelets are born in the boundary-layer regions. These quickly 
increase in amplitude to form part of the wave trains. This process is repeated inde- 
finitely with further waves colliding at the centre and further waves being formed 
near the boundaries to replenish the wave trains. 

As was seen in Leach et al. [3], it is possible for wave pulses to be generated for 
values of  the parameters for which stationary state (4b) is stable. This situation can 
occur for values of the parameters satisfying the conditions q < q, (the value of  q 
above which the well-stirred system is non-oscillatory for all parameter values), 
f > f g  (the value o f f  corresponding to the upper Hopf  bifurcation) and e < ec < <  1 
(this critical value of  e = ec has not been determined exactly, though further calcu- 
lations suggest that it lies between e = 0.05 and e = 0.15). Figure 5 illustrates this 
phenomenon for values of the parameters f = 3.0, e = 0.05 and D = 0.00001, by 
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presenting a sequence of  profiles of  the concentration of  autocatalyst u plotted 
against x (again after sufficient time for the transients to have died out). Figure 5(a) 
shows two waves being born out of the boundary-layer region with the central 
region being in its refractory phase, u = q. Figure 5(b) shows that two travelling 
pulses have formed, completely detached from the boundaries, travelling towards 
the centre, leaving behind a refractory region in which u = q (even though station- 
ary state (4b) is stable, having the steady state value us = 0.001598, approximately 
2q). Figures 5(c) and 5(d) illustrate the collision of  these travelling pulses. As the 
waves collide, they cannot pass through each other as the region behind each wave 
is at first refractory to further excitation. Hence the waves of  excitation slowly die 
out, leaving the refractory state as shown in fig. 5(a). The finite region then gradu- 
ally recovers excitability for the whole process to be repeated. 

Although we used a very small value for D in this case, a value for which up to 
six distinct waves were seen in each wavetrain for the previous (unstable) case, here 
we saw only one wave pulse generated at each boundary. To compute this case we 
required a very large number (n = 500) of  grid points across the region to represent 
the solution in the boundary layer properly and to maintain a reasonable overall 
accuracy. Also, a large number of  time steps were required to allow transients to die 
out and to represent the full sequence shown in fig. 5. This was about the limit of 
the computat ional  resources available to us, so we were unable to take much smal- 
ler values of D to see if it were possible for more than one travelling wave pulse to 
be generated, with a sequence of events similar to that depicted in fig. 5. We expect 
this to require (if it occurs at all) a value of  D several orders of  magnitude smaller 
than the one used above. 

Finally, we considered the case when u0 ~ ul. Here we again took u0 --- 1 but 
now put  ul = 0, and used the same values for e, f and D as in the previous case. The 

1,0 1.0 

:3 0.5 0~5 

0.0 ' , 0.0 
o.o o.2 o14 o',6 d,8 ,'o o~o 

X 

(c) 

o'.2 o14 o16 

1.0 • I 0 

0.5 0.5 - 

0.0 ~ , O0 . . . . . . . . . . .  7 

o.o 0.2 04 0,6 (),a 1'0 oo  o,2 0,4 

0.8 1.0 

(d) 

o!6 ~s ' 
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sequence of u concentration profiles is shown in fig. 6 (after transients had died 
out). In fig. 6(a) we can see that a wave has become detached from the boundary- 
layer region close to x = 0 (there is now no equivalent structure on x = 1). This 
wave now travels across the whole region, figs. 6(b) and 6(c), into a refractory 
region (where u = q) and also leaving behind the system in its refractory state. This 
wave is dissipated on the wall at x = 1 (there is no reflection of  waves in this sys- 
tem) while at the same time another wave is being formed in the boundary-layer 
region on x = 0, fig. 6(d), enabling the whole sequence to be repeated. 

3. D i scuss ion  

In this paper we have conducted an initial numerical study of a finite one- 
dimensional system with BZ kinetics. Initially, the system is assembled at an 
unstable steady state (u = v = 0). The waves are initiated and sustained by impos- 
ing constant values for the concentration of reactant species X at the boundaries. 
The species Z (Ce(IV)) is assumed to be immobilized in the reaction zone ~ind only 
the autocatalyst X (hypobromous acid) is allowed to diffuse. The kinetic para- 
meters q, c a n d f  have been varied so as to cover a range of cases, such that the cor- 
responding non-zero steady state of the well-stirred system may be either stable or 
unstable. With an unstable non-zero steady state, the system displays a stable limit 
cycle in the this case. For our reaction-diffusion problem, such parameters set up 
an essentially phase-wave behind the travelling reaction front. At any given point, 
the concentrations u and v undergo time-periodic variations that follow closely 
the corresponding oscillations for the well-stirred system. 

If  the steady state behind the wave front is sufficiently stable, the reaction- 
diffusion problem evolves to this solution, with thin transition regions close to the 
boundaries being required to satisfy the boundary conditions. However if the sys- 
tem is sufficiently excitable (i.e. ¢ is sufficiently small) and if the boundary condi- 
tions impose a sufficiently high concentration of the reactant X, the stable steady 
state is not  attained after the initial passage of  the reaction front. A supercritical 
disturbance is released before u can approach Us and a second reaction pulse is initi- 
ated. Successive repetitions then lead to the establishment of  a periodic spatiotem- 
poral response even though the corresponding well-stirred system has a stable 
steady state: a periodic wavetrain has emerged in this system even though constant 
concentrations of  reactant X are maintained at the boundaries. 

One further feature worth noting is the synchronization between the" collision 
and collapse of  the waves at the centre of the region and the birth of further waves 
at the two boundaries. This is, perhaps, best illustrated by the results shown in fig. 
4, but  it applied in all the other cases. The leading waves in each wavetrain collide 
and then dissipate at the centre and when the concentration here has just reached its 
refractory state another wave is born in each boundary-layer region so as to main- 
tain the uniformity of  the wavetrains propagating towards the centre. 
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To complete the discussion we note, from eq. ( la)  that  for small D the bound-  
ary-layers have a thickness of  O(D 1/2) and thus the rescaling 

= D1/2x or ~ =  O-I/2(1 - x) (6) 

is suggested. Consider the boundary-layer  in x = 0 (the argument  for the bound-  
ary-layer on x = 1 follows almost exactly). Equation ( la)  becomes, using (6), 

Ou 02u (q - u) 
E - -  = + u(1 - u) + f v - -  (7) 

Ot O~ 2 (q + u) 

with eq. ( lb)  unaltered. The boundary  condition on c = 0 is still u = u0 and the solu- 
tion must  match  with the solution in the central part  of  the region as ~--+ oo. This 
is most  easily realised if we are in a situation in which this outer  solution is the 
stable stat ionary state u = v = us. In this case (with time derivatives put to zero) we 
have, f rom eq. (1 b), v = u and hence we have to solve the equation 

d2u (q - u) 
d~ 2 + u ( 1  u) = 0  (8a) - + f u  (q + u) 

in the boundary- layer  region 0 ~< ~ < cx~ with 

u = u 0  on ~ = 0 ,  u-+us as ~--~c~. (8b) 

Equat ion (8a) can be integrated once to get 

( 0 u )  ~ 
= - u + 3 - 

+ f  ( u 2 - ~ - 4 q ( U - U s ) + 4 q 2 1 ° g ( U + q ~ )  " \ u s  + q /  (9) 

Equat ion (9) cannot  be integrated further to give u directly in terms of  ~, but  it 
does show that  a solution can be obtained in this boundary- layer  region which is 
mono tone  decreasing if u0 > Us and monotone  increasing if u0 < us. 

The explanation of  the large time behaviour of  the system when the system 
approaches a steady state is thus complete. The large-time behaviour when a genu- 
ine spatio-temporal  structure develops is far more  complex to deal with and will 
be the subject of  a subsequent paper. 
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